Enhancing the Performance of K-Means Clustering by using Fuzzy Partitioning Matrix
نویسندگان
چکیده
Clustering hast two approaches, Hard clustering and soft clustering. The hard clustering restricts that the data object in the given data belongs to exactly one cluster. The problem with hard K-Means (KM) clustering is that the different initial partitions can result in different final clusters. Soft clustering which also known as fuzzy clustering forms clusters such that data object can belong to more than one cluster based on their membership levels. But sometimes the resulting membership values do not always correspond well to the degrees of belonging of the data. So to overcome the problems in hard Fuzzy K-Means clustering, the improved Fuzzy K-Means (FKM) clustering approach is proposed. The proposed improved Fuzzy K-Means clustering assigns membership to an object inversely related to the relative distance of the object to cluster prototype. Fuzzy K-Means clustering assigns membership levels which indicate the degree to which the data elements belong to the clusters, and then using them to assign data object to one or more clusters. These indicate the strength of the association between that data object and a particular cluster. The proposed work also compares the execution time and required memory of Proposed Fuzzy K-Means (FKM) to that of existing Fuzzy K-Means
منابع مشابه
Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017